Wavefunction, Inc. www.wavefun.com

ODYSSEY Molecular Explorer - Release 6.2 -

Correlation with the North Carolina Science Standards Revised 2004

PHYSICAL SCIENCE

Grades 9-12

COMPETENCY GOAL 3 The learner will analyze energy and its conservation.

3.01 Investigate and analyze storage of energy:

- Kinetic energy.
- Potential energies: gravitational, chemical, electrical, elastic, nuclear.
- Thermal energy.

→ LAB Gases "Mean Speed and Temperature"

→ LAB Thermochemistry "Thermal Energy"

COMPETENCY GOAL 5 The learner will build an understanding of the structure and properties of matter.

5.01 Develop an understanding of how scientific processes have led to the current atomic theory.

- Dalton's atomic theory.
- J.J. Thomson's model of the atom.
- Rutherford's gold foil experiment
- Bohr's planetary model.
- Electron cloud model.

→ LAB Atoms "Nuclei and Electrons"

→ LAB Atoms "The Electron Cloud of an Argon Atom"

5.02 Examine the nature of atomic structure:

• Protons.

- Neutrons.
- Electrons.
- Atomic mass.
- Atomic number.
- Isotopes.

→ LAB Atoms "Nuclei and Electrons"

→ LAB Atoms "s- and p-Orbitals"

- → LAB Atoms "The Electron Cloud of an Argon Atom"
- → LAB Atoms "d-Orbitals"

5.03 Identify substances through the investigation of physical properties:

- Density.
- Melting point.
- Boiling point.

→ LAB Chemical Matter "Chemical and Physical Properties"

COMPETENCY GOAL 6 The learner will build an understanding of regularities in chemistry.

6.01 Analyze the periodic trends in the physical and chemical properties of elements.

- Groups (families).
- Periods.
- → MISCELLANEOUS Chemical Matter "Examples of Chemical Elements"
- → MISCELLANEOUS Main Groups "Alkali Metals"
- → MISCELLANEOUS Main Groups "Alkaline Earth Metals"
- → MISCELLANEOUS *Transition Metals* "Elements of the d- and f-Blocks"
- → MISCELLANEOUS Main Groups "Boron Group"
- → MISCELLANEOUS Main Groups "Carbon Group"
- → MISCELLANEOUS Main Groups "Nitrogen Group"
- → MISCELLANEOUS Main Groups "Oxygen Group"
- → MISCELLANEOUS Main Groups "Halogens"
- → MISCELLANEOUS Main Groups "Noble Gases"

6.02 Investigate and analyze the formation and nomenclature of simple inorganic compounds.

- Ionic bonds (including oxidation numbers).
- Covalent bonds.
- Metallic bonds.

→ LAB Chemical Matter "Naming Molecular Compounds"

-> LAB Chemical Bonding "Exploring Ionic Interactions"

- → LAB Chemical Bonding "Electron Sharing in Molecules"
- → LAB Chemical Bonding "Energetics of Covalent Bonding"
- → LAB Chemical Bonding "Polar Bonds and Molecules"
- → LAB Chemical Bonding "Classifying by Bond Polarity"

6.03 Identify the reactants and products of chemical reactions and balance simple equations of various types:

- Single replacement.
- Double replacement.
- Decomposition.
- Synthesis.

→ **DEMONSTRATION** Solutions "How do salts dissolve in water?"

→ **DEMONSTRATION** *Kinetics* "What does a chemical reaction look like at the molecular level?"

→ LAB Kinetics "Examining a Reaction Mechanism"

- 6.05 Investigate and analyze the properties and composition of solutions:
 - Solubility curves.
 - Concentration.
 - Polarity.
 - pH scale.
 - Electrical conductivity.

→ MISCELLANEOUS Solutions "Energetics of Solutions"

→ LAB Solutions "Concentration of a Dissolved Pesticide"

→ MISCELLANEOUS Solutions "Miscible and Nonmiscible Liquids"

CHEMISTRY

Grades 9-12

COMPETENCY GOAL 2 The learner will build an understanding of the structure and properties of matter.

2.02 Examine the nature of atomic structure.

- Subatomic particles: protons, neutrons, and electrons.
- Mass number.

- Atomic number.
- Isotopes.

→ LAB Atoms "Nuclei and Electrons"

→ LAB Atoms "The Electron Cloud of an Argon Atom"

2.03 Apply the language and symbols of chemistry.

- Name compounds using the IUPAC conventions.
- Write formulas of simple compounds from their names.

→ LAB Chemical Matter "Naming Molecular Compounds"

→ LAB Organic Chemistry "Isomers of the Alkanes"

→ LAB Organic Chemistry "Straight-Chain Alkanes"

→ LAB Organic Chemistry "Isomers of Alkenes and Alkynes"

→ LAB Organic Chemistry "Cyclic Hydrocarbons"

2.04 Identify substances using their physical properties:

- Melting points.
- Boiling points.
- Density.
- Solubility.

→ LAB Chemical Matter "Chemical and Physical Properties"

→ MISCELLANEOUS Solutions "Miscible and Nonmiscible Liquids"

2.05 Analyze the basic assumptions of kinetic molecular theory and its applications:

- Ideal Gas Equation.
- Combined Gas Law.
- Dalton's Law of Partial Pressures.

→ LAB Gases "The Pressure-Volume Relationship"

- → LAB Gases "The Pressure-Temperature Relationship"
- → **DEMONSTRATION** Gases "What is Boyle's Law?"
- → **DEMONSTRATION** Gases "What is Avogadro's Law?"
- → MISCELLANEOUS Gases "The Universality of the Ideal Gas Law"
- **2.06** Assess bonding in metals and ionic compounds as related to chemical and physical properties.

→ LAB Chemical Bonding "Exploring Ionic Interactions"

→ LAB Liquids & Solids "Bonding in Crystalline Solids"

2.07 Assess covalent bonding in molecular compounds as related to molecular geometry and chemical and physical properties.

• Molecular.

- Macromolecular.
- Hydrogen bonding and other intermolecular forces (dipole/dipole interaction, dispersion).
- VSEPR theory.

→ LAB Chemical Bonding "Comparing Conceivable Shapes for a Molecule"

→ LAB Liquids & Solids "Structure and Dynamics of Liquid Water"

→ LAB Liquids & Solids "Intermolecular Forces"

→ MISCELLANEOUS Liquids & Solids "Elements with HydrogenBonding"

2.08 Assess the dynamics of physical equilibria.

- Interpret phase diagrams.
- Factors that affect phase changes.

→ LAB Liquids & Solids "The Melting Transition"

→ **DEMONSTRATION** Chemical Matter "Do physical changes affect the amount of

matter?"

COMPETENCY GOAL 3

The learner will build an understanding of regularities in chemistry.

3.01 Analyze periodic trends in chemical properties and use the periodic table to predict properties of elements.

- Groups (families).
- Periods.
- Representative elements (main group) and transition elements.
- Electron configuration and energy levels.
- Ionization energy.
- Atomic and ionic radii.
- Electronegativity.
 - → LAB Atoms "s- and p-Orbitals"
 - → MISCELLANEOUS Main Groups "Alkali Metals"
 - → MISCELLANEOUS Main Groups "Alkaline Earth Metals"
 - → MISCELLANEOUS Transition Metals "Elements of the d- and f-Blocks"
 - → MISCELLANEOUS Main Groups "Boron Group"
 - → MISCELLANEOUS Main Groups "Carbon Group"
 - → MISCELLANEOUS Main Groups "Nitrogen Group"
 - → MISCELLANEOUS Main Groups "Oxygen Group"
 - → MISCELLANEOUS Main Groups "Halogens"
 - → MISCELLANEOUS Main Groups "Noble Gases"

- Particles to moles.
- Mass to moles.
- Volume of a gas to moles.
- Molarity of solutions.
- Empirical and molecular formula.
- Percent composition.

→ LAB Solutions "Concentration of a Dissolved Pesticide"

→ MISCELLANEOUS Solutions "Molarity vs. Molality"

COMPETENCY GOAL 4 The learner will build an understanding of energy changes in chemistry.

4.02 Analyze the law of conservation of energy, energy transformation, and various forms of energy involved in chemical and physical processes.

- Differentiate between heat and temperature.
- Analyze heating and cooling curves.
- Calorimetry, heat of fusion and heat of vaporization calculations.
- Endothermic and exothermic processes including interpretation of potential energy.
- Diagrams (energy vs reaction pathway), enthalpy and activation energy.

→ LAB Thermochemistry "Specific Heat"

- → LAB Thermochemistry "Thermal Energy"
- → LAB Kinetics "Reactive Collisions Between Molecules"
- → LAB Kinetics "Examining a Reaction Mechanism"
- → LAB Equilibria "Equilibrium and Temperature"

4.03 Analyze the relationship between entropy and disorder in the universe.

→ **DEMONSTRATION** Chemical Thermodynamics "Are gas expansions irreversible?"

→ **DEMONSTRATION** *Chem. Thermodyn.* "Do all spontaneous processes involve a visible increase of disorder?"

→ LAB Chemical Thermodynamics "Entropy and the States of Matter"

COMPETENCY GOAL 5 The learner will develop an understanding of chemical reactions.

5.04 Identify the physical and chemical behaviors of acids and bases.

- General properties of acids and bases.
- Concentration and dilution of acids and bases.
- Ionization and the degree of dissociation (strengths) of acids and bases.
- Indicators.
- Acid-base titration.

- pH and pOH.
 - → **DEMONSTRATION** Solutions "How do salts dissolve in water?"
 - → LAB Acids & Bases "Strong Acids"
 - → LAB Acids & Bases "Structure and Acidity"
- **5.06** Assess the factors that affect the rates of chemical reactions.
 - The nature of the reactants.
 - Temperature.
 - Concentration.
 - Surface area.
 - Catalyst.

→ LAB Kinetics "Reactive Collisions Between Molecules"